A deformed quantum $\operatorname{SU}(2)$ superalgebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L455
(http://iopscience.iop.org/0305-4470/24/9/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:13

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A deformed quantum $\mathbf{S U (2)}$ superalgebra

B Aneva
Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

Received 26 February 1991

Abstract

A quantum q-deformation of the $\operatorname{SU}(2)$ superalgebra is obtained which contains as an even part the quantum $\mathrm{SU}_{q}(2)$ algebra. The finite-dimensional irreducible representations of the deformed quantum superalgebra are found.

Recently there has been great interest in the study of new types of algebraic structures, loosely called quantum groups. In precise mathematical language these objects have been categorized in terms of Hopf algebras by Drinfeld [1] and have been intensively developed by Jimbo [2-4] and Woronowicz [5, 6]. More recently a realization of the quantum groups $\mathrm{SU}_{q}(2)$ and $\mathrm{SU}_{q}(1,1)$ have been constructed [7,8] using a q-generalization of the Jordan-Schwinger approach to group representation theory by means of a q-analogue of the boson operator calculus.

The boson realization method is a very powerful and elegant method for the study of group representations. It has been successfully applied to construct representations of Lie algebras [9], Lie superalgebras [10] and loop algebras [11]. The quantum analogue of the simplest superalgebra generated by three elements has been considered in [12]. In this letter we apply the q-generalization of the Jordan-Schwinger method to obtain a q-deformation of the $\mathrm{SU}(2)$ superalgebra which contains the quantum $\mathrm{SU}_{q}(2)$ algebra as an even part. In the limit $q \rightarrow 1$ the deformed quantum $\mathrm{SU}(2)$ superalgebra contracts to the $\mathrm{SU}(2)$ Lie superalgebra.

We briefly sketch the $S U(2)$ superalgebra and its representations. The even part is the Lie algebra of $\mathrm{SU}(2)$ generated by $J_{3}, J_{ \pm}=J_{1} \pm \mathrm{i} J_{2}$ with commutation relations

$$
\begin{equation*}
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=2 J_{3} . \tag{1}
\end{equation*}
$$

The odd generators $Q_{\alpha}(\alpha=1,2)$ form a $\operatorname{SU}(2)$ spinor

$$
\begin{equation*}
\left[J_{k}, Q_{\alpha}\right]=-\frac{1}{2}\left(\sigma_{k} Q\right)_{\alpha} \quad k=1,2,3 \tag{2}
\end{equation*}
$$

with σ_{k} denoting the Pauli matrices. Q_{α} satisfy

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\beta}\right\}=2\left(\sigma_{k} \varepsilon\right)_{\alpha \beta} J_{k} \quad \varepsilon_{i j}=-\varepsilon_{j i} \tag{3}
\end{equation*}
$$

The finite-dimensional irreducible representations with the highest-weight vector are labelled by a quantum number $j=\frac{1}{2}$ or $j=1$ where 1 is a natural number. With respect to the even subalgebra the j-representation is decomposed into a direct sum of two irreducible representations corresponding to spin j and $j-\frac{1}{2}$.

In order to obtain a q-deformed $\mathrm{SU}(2)$ superalgebra we shall follow the procedure of applying the Jordan-Schwinger approach to Lie superalgebras. We start with a pair
of q-analogues of boson creation and annihilation operators a_{i} and a_{i}^{+}and the corresponding number operators $N_{i}(i=1,2)$, which obey (for equal i) the relations:

$$
\begin{align*}
& a_{i} a_{i}^{+}-q^{1 / 2} a_{i}^{+} a_{i}=q^{-N_{i} / 2} \tag{4}\\
& a_{i} a_{i}^{+}-(1 / q)^{1 / 2} a_{i}^{+} a_{i}=(1 / q)^{-N_{i} / 2} \tag{5}\\
& {\left[N_{i}, a_{i}\right]=-a_{i} \quad\left[N_{i}, a_{i}^{+}\right]=a_{i}^{+}}
\end{align*}
$$

We suppose now that $a_{i}^{+}=\varepsilon_{i j} a_{j}, \varepsilon_{i j}=-\varepsilon_{j i}, \varepsilon_{12}=1$ and analyse the above relations with this supposition. We have

$$
\begin{align*}
& a_{1} a_{2}-q^{1 / 2} a_{2} a_{1}=q^{-N_{1} / 2} \tag{4a}\\
& -a_{2} a_{1}+q^{1 / 2} a_{1} a_{2}=q^{-N_{2} / 2} \tag{4b}
\end{align*}
$$

and correspondingly for $q \rightarrow 1 / q$

$$
\begin{align*}
& a_{1} a_{2}-(1 / q)^{1 / 2} a_{2} a_{1}=(1 / q)^{-N_{1} / 2} \tag{5a}\\
& -a_{2} a_{1}+(1 / q)^{1 / 2} a_{1} a_{2}=(1 / q)^{-N_{2} / 2} \tag{5b}
\end{align*}
$$

Comparing (4a) with (5b) and (4b) with (5a) we conclude that if the relations (4) and (5) are to be consistent we must have

$$
\begin{equation*}
-N_{1}=N_{2}+1 \quad \text { and } \quad-N_{2}=N_{1}+1 \tag{6}
\end{equation*}
$$

We solve now (4) or (5) with respect to $a_{1} a_{2}$ and $a_{2} a_{1}$ and find

$$
\begin{equation*}
a_{1} a_{2}=-\left[N_{2}\right] \quad a_{2} a_{1}=\left[N_{1}\right] \tag{7}
\end{equation*}
$$

where $[A]$ is defined as

$$
\begin{equation*}
[A]=\frac{q^{A / 2}-q^{-A / 2}}{q^{1 / 2}-q^{-1 / 2}} \quad q \in R . \tag{8}
\end{equation*}
$$

The interpretation of the relation $-N_{1}+-N_{2}=1$ between the two N-operators is simply that only one of them may have the meaning of a number operator with respect to which a_{1} and a_{2} are creation and annihilation operators respectively:

$$
\begin{array}{lll}
{\left[N_{1}, a_{1}\right]=-a_{1}} & \text { or } & {\left[N_{2}, a_{1}\right]=a_{1}} \\
{\left[N_{1}, a_{2}\right]=a_{2}} & & {\left[N_{2}, a_{2}\right]=-a_{2} .} \tag{9}
\end{array}
$$

We argue that given the quantum group SU_{q} (2), which is generated algebraically by the operators J_{+}, J_{-}and J_{3} obeying the Lie bracket (commutator) relations

$$
\begin{equation*}
\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{3}\right] \tag{10}
\end{equation*}
$$

and given the two operators $a_{1,2}$, defined by the relations (7) and (9), provided $-N_{1}-N_{2}=1$, we can construct a deformed quantum superalgebra the even part of which is the algebra (10).

From (7) we form the anticommutator

$$
\begin{equation*}
\left\{a_{1}, a_{2}\right\}=\left[N_{1}\right]+\left[N_{1}+1\right] . \tag{11}
\end{equation*}
$$

We postulate further

$$
\begin{align*}
& \left\{a_{1}, a_{1}\right\}=g_{-}\left(N_{1}, N_{2}, q\right) J_{-} \tag{12}\\
& \left\{a_{2}, a_{2}\right\}=g_{+}\left(N_{1}, N_{2}, q\right) J_{+}
\end{align*}
$$

Due to the relation between N_{1} and N_{2} we have to choose for J_{3} one of the expressions

$$
J_{3}=N_{1}+\frac{1}{2} \quad \text { or } \quad J_{3}=-N_{2}-\frac{1}{2} .
$$

In both cases the anticommutator (11) has the same form in terms of the operator J_{3} :

$$
\begin{equation*}
\left\{a_{1}, a_{2}\right\}=\left[J_{3}+\frac{1}{2}\right]+\left[J_{3}-\frac{1}{2}\right] . \tag{13}
\end{equation*}
$$

We observe that due to (9) the operators a_{1} and a_{2} satisfy

$$
\begin{equation*}
\left[J_{3}, a_{1}\right]=-\frac{1}{2} a_{1} \quad\left[J_{3}, a_{2}\right]=\frac{1}{2} a_{2} \tag{14}
\end{equation*}
$$

Simple algebraic manipulations show that the operators $J_{ \pm}, J_{3}$, defined by (12), satisfy the $\mathrm{SU}_{q}(2)$ Lie algebra (10) provided the functions $g_{ \pm}$have the form

$$
g_{ \pm}\left(q, N_{1}, N_{2}\right)= \pm f(q)= \pm 2\left(q^{1 / 2}+q^{-1 / 2}\right)^{1 / 2}
$$

To verify this result we have only used (9) and (7). Hence
$\left\{a_{1}, a_{1}\right\}=-2\left(q^{1 / 2}+q^{-1 / 2}\right)^{1 / 2} J_{-} \quad\left\{a_{2}, a_{2}\right\}=2\left(q^{1 / 2}+q^{-1 / 2}\right)^{1 / 2} J_{+}$.
To close the superalgebra we need further determine the commutator [$J_{ \pm}, a_{i}$] with $i=1,2$. From (4), (5) and the expressions (12) for $J_{ \pm}$in terms of $a_{1,2}$ it follows, with $J_{3}=N_{1}+\frac{1}{2}$:

$$
\begin{align*}
& {\left[J_{+}, a_{1}\right]=-\left(q^{1 / 2}+q^{-1 / 2}\right)^{-1 / 2}\left(q^{N_{1} / 2}+q^{-N_{1} / 2}\right) a_{2}} \\
& {\left[J_{+}, a_{2}\right]=0 \quad\left[J_{-}, a_{1}\right]=0} \tag{16}\\
& {\left[J_{-}, a_{2}\right]=-\left(q^{1 / 2}+q^{-1 / 2}\right)^{-1 / 2}\left(q^{\left(N_{1}+1\right) / 2}+q^{-\left(N_{1}+1\right) / 2}\right) a_{1}}
\end{align*}
$$

We have thus obtained a q-deformation of the $S U(2)$ superalgebra, defined by the relations (10); (14), (16) and (13), (15). It is an infinite-dimensional associative superalgebra, a deformation of the universal enveloping of the $\mathrm{SU}(2)$ Lie superalgebra. It includes as an even part the quantum $\mathrm{SU}_{q}(2)$ algebra. In the limit $q \rightarrow 1$ the deformed superalgebra contracts to the $\mathrm{SU}(2)$ Lie superalgebra.

The action of the quantum superalgebra generators in the tensor product of two representations is dfiened by the coproduct Δ

$$
\begin{align*}
& \Delta\left(J_{3}\right)=J_{3} \otimes I+I \otimes J_{3} \\
& \Delta\left(J_{ \pm}\right)=J_{ \pm} \otimes q^{J_{3} / 2}+q^{-J_{3} / 2} \otimes J_{ \pm} \tag{17}\\
& \Delta\left(a_{1,2}\right)=a_{1,2} \otimes q^{J_{3} / 4}+q^{-J_{3} / 4} \otimes a_{1,2}
\end{align*}
$$

which amounts to a Hopf algebra structure for the quantum $S U(2)$ superalgebra.
The ansatz $a_{i}^{+}=\varepsilon_{i j} a_{j}$ exploited so far is a grade-adjoint operation on the quantum superalgebra defined as:

$$
\begin{array}{lll}
J_{3}^{+}=J_{3} & J_{ \pm}^{+}=J_{ \pm} & a_{1,2}^{+}= \pm a_{2,1} \\
(A B)^{+}=(-1)^{p(A) p(B)} B^{+} A^{+} & \left(A^{+}\right)^{+}=(-1)^{p(A)} A \tag{18}
\end{array}
$$

where $p(A)=0,1$ is the degree of the homogeneous element A of the superalgebra.
We proceed further to construct a representation of the q-deformed quantum $S U(2)$ superalgebra. As a superalgebra obeying the graded Lie brackets (10) and (13)-(16) it has representations with the same structure as in the classical case. We are interested in finite-dimensional irreducible representations. For this purpose we have to choose a finite-dimensional irrepresentation of the even subalgebra and then construct a representation of the superalgebra by the action of the odd generators. Given a
representation $\left|j_{0}, m\right\rangle$ by the action of the odd generators. Given a representation $\left|j_{0}, m\right\rangle$ of $\mathrm{SU}_{q}(2)$ (according to Jimbo a finite-dimensional irreducible representation of $\mathrm{SU}_{q}(2)$ is labelled by a quantum number j, taking integer and half-integer values and acts in a Hilbert space V_{j} with dimension $2 j+1$) then the representation space of the quantum superalgebra is spanned by the components $\left|j_{0}, m\right\rangle, a_{1}\left|j_{0}, m\right\rangle, a_{2}\left|j_{0}, m\right\rangle$ and $a_{[1} a_{2]}\left|j_{0}, m\right\rangle$. It contains two types of j-multiplets $|j, m\rangle$ and $\left|j-\frac{1}{2}, m\right\rangle$ belonging to spin j and $j-\frac{1}{2}$, with j integer or half-integer. The j-represenation admits an even invariant bilinear form $\langle\mid\rangle$ with respect to which the two spin j-multiplets are orthogonal. With a convenient normalization of the basis vectors the j-representation of the deformed $\mathrm{SU}(2)$ quantum superalgebra is defined as:
$J_{3}|j, m\rangle=2 m|j, m\rangle \quad J_{3}\left|j-\frac{1}{2}, m\right\rangle=2 m\left|j-\frac{1}{2}, m\right\rangle$
$J_{ \pm}|j, m\rangle=\left(q^{1 / 2}+q^{-1 / 2}\right)^{-1 / 2}([2 j \mp 2 m][2 j \pm 2 m+2])^{1 / 2}|j, m \pm 1\rangle$
$J_{ \pm}\left|j-\frac{1}{2}, m\right\rangle=\left(q^{1 / 2}+q^{-1 / 2}\right)^{-1 / 2}([2 j-1 \mp 2 m][2 j+1 \pm 2 m])^{1 / 2}\left|j-\frac{1}{2}, m \pm 1\right\rangle$
$a_{1}|j, m\rangle=[j+m]^{1 / 2}\left(q^{(j-m+1) / 2}+q^{-(j-m+1) / 2}\right)^{1 / 2}\left|j-\frac{1}{2}, m-\frac{1}{2}\right\rangle$
$a_{1}\left|j-\frac{1}{2}, m\right\rangle=-\left[j-m+\frac{1}{2}\right]^{1 / 2}\left(q^{(j+m+1 / 2) / 2}+q^{-(j+m+1 / 2) / 2}\right)^{1 / 2}\left|j, m-\frac{1}{2}\right\rangle$
$a_{2}|j, m\rangle=[j-m]^{1 / 2}\left(q^{(j+m+1) / 2}+q^{-(j+m+1) / 2}\right)^{1 / 2}\left|j-\frac{1}{2}, m+\frac{1}{2}\right\rangle$
$\left.\left.a_{2}\left|j-\frac{1}{2}, m\right\rangle=\left[j+m+\frac{1}{2}\right]^{1 / 2}\left(q^{(j-m+1 / 2) / 2}+q^{-(j-m+1 / 2) / 2}\right)^{1 / 2} \right\rvert\, j, m+\frac{1}{2}\right)$
where $m=-j, \ldots, j$.
In deriving (19) we made use of the fact that the representation is grade-adjoint with respect to the norm $\langle\mid\rangle$.

References

[1] Drinfeld V B 1986 Quantum Groups (Proc. Int. Congr. Math.) (Berkeley, CA: MSRI)
[2] Jimbo M 1985 Lett. Math. Phys. 1063
[3] Jimbo M 1985 Lett. Math. Phys. 11247
[4] Jimbo M 1986 Commun. Math. Phys. 102537
[5] Woronowicz S 1987 Commun. Math. Phys. 111613
[6] Woronowicz S 1988 Invent. Math. 9335
[7] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[8] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[9] Sun C P 1987 J. Phys. A: Math. Gen. 204551
[10] Sun C P 1987 J. Phys. A: Math. Gen. 205823
[11] Sun C P 1987 J. Phys. A: Math. Gen. 20 L1157
[12] Kulish P P and Reshetikhin N Y 1989 Lett. Math. Phys. 18143

